Tansley review Revisiting the ‘ Gadgil effect ’ : do interguild fungal interactions control carbon cycling in forest soils ?
نویسندگان
چکیده
In forest ecosystems, ectomycorrhizal and saprotrophic fungi play a central role in the breakdownof soil organicmatter (SOM).Competitionbetween these two fungal guilds has long been hypothesized to lead to suppression of decomposition rates, a phenomenon known as the ‘Gadgil effect’. In this review, we examine the documentation, generality, and potential mechanisms involved in the ‘Gadgil effect’. We find that the influence of ectomycorrhizal fungi on litter and SOM decomposition is much more variable than previously recognized. To explain the inconsistency in size anddirectionof the ‘Gadgil effect’,weargue that abetter understanding of underlying mechanisms is required. We discuss the strengths and weaknesses of each of the primary mechanisms proposed to date and how using different experimental methods (trenching, girdling, microcosms), as well as considering different temporal and spatial scales, could influence the conclusions drawn about this phenomenon. Finally, we suggest that combining new research tools such as high-throughput sequencing with experiments utilizing natural environmental gradients will significantly deepen our understanding of the ‘Gadgil effect’ and its consequences on forest soil carbon and nutrient cycling.
منابع مشابه
Revisiting the 'Gadgil effect': do interguild fungal interactions control carbon cycling in forest soils?
In forest ecosystems, ectomycorrhizal and saprotrophic fungi play a central role in the breakdown of soil organic matter (SOM). Competition between these two fungal guilds has long been hypothesized to lead to suppression of decomposition rates, a phenomenon known as the 'Gadgil effect'. In this review, we examine the documentation, generality, and potential mechanisms involved in the 'Gadgil e...
متن کاملLitter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils
Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding (13)C labeled leaf-litter into a coniferous forest (CF) soil and a broadleaved forest (BF) soil. In this experiment, respo...
متن کاملN fertilization effects on denitrification and N cycling in an aggrading forest.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. S...
متن کاملCellulose degradation in anaerobic environments.
In anaerobic environments rich in decaying plant material, the decomposition of cellulose is brought about by complex communities of interacting microorganisms. Because the substrate, cellulose, is insoluble, bacterial and fungal degradation occurs exocellularly, either in association with the outer cell envelope layer or extracellularly. Products of cellulose hydrolysis are available as carbon...
متن کاملSubstrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils.
Temperature and substrate availability constrain the activity of the extracellular enzymes that decompose and release nutrients from soil organic matter (SOM). Proteolytic enzymes are the primary class of enzymes involved in the depolymerization of nitrogen (N) from proteinaceous components of SOM, and their activity affects the rate of N cycling in forest soils. The objectives of this study we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016